Non-linear Hydroelastic Response Analysis in Irregular Head Waves, for a Large Bulk Carrier Structure, and Fatigue based Preliminary Ship Service Life Prediction

MASTER THESIS developed at "Dunarea de Jos" University of Galati in the frame of the "Emship" Erasmus Mundus Master Course in "Integrated Advanced Ship Design"

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

February 2013

Non-linear Hydroelastic Response Analysis in Irregular Head Waves, for a Large Ad Bulk Carrier Structure, and Fatigue based Preliminary Ship Service Life Prediction

Bulk Carrier Azul Frontier rom "Shipbuilding and Marine Engineering" Magazine

Drawings and information from similar ships were granted by ICEPRONAV S.A, from the similar designs developed in the last years.

Main Dimensions of the Bulk Carrier						
Dimension	Value					
Length overall (Loa)	289.87 m					
Length between	279.00 m					
perpendiculars (Lpp)						
Rule Length (L)	279.00 m					
Breadth (B)	45.00 m					
Depth (D)	24.00 m					
Design Draft (T)	15.20 m					
Service Speed (v_0)	16.00 Knots					
Block coefficient (C_B)	0.805					
Deadweight (DWT)	162 000 tdw					
Number of Cargo Holds	9					

Offset line

Preliminary General Arrangement

				PR	OFILE				
	CARGO HOLD 9	CARGO HOLD 8	CARGO HOLD 7	CARGO HOLD 6	CARGO HOLD 5	CARGO HOLD 4	CARGO HOLD 3	CARGO HOLD 2	CARGO HOLD 1
						·····			
1					U) DECK				7
				MA	IN DECK				
	CARGO HOLD 9	CARGO HOLD 8	CARGO HOLD 7	CARGO HOLD 6	CARGO HOLD 5	CARGO HOLD 4	CARGO HOLD 3	CARGO HOLD 2	CARGO HOLD 1

Aft area - zone 2 (Fr. 24, x = 18.50m)

Fore area - zone 12 (Fr.355, x = 273.60m)

The idealization of the inertia and resistance characteristics of the 1D-girder model

The diagram of the inertial moment

The diagram of the total area and shear area

The diagram of the bending resistance modules of the extreme fibre for bottom and for deck

Natural modes frequencies for the two loading conditions

Bulk Carrier		Oscill	ations	Vibrations			
		f [I	Hz]		f [Hz]		
Mode:		0 1		2	2 3 4		
Nr.	Case						
1	Full Load	0.094	0.103	0.546	1.03	1.51	
2	Ballast Load	0.110	0.115	0.663	1.25	1.82	

3D-CAD/FEM Model – Model Presentation

Uz

Fix

Fix

Rx

Fix

Fix

Fix

Rotational

Ry

Rz

Fix

Fix

Translational

Uv

Fix

Fix

Fix

Ux

Fix

Boundary Conditions

Location of the

independent point

ND_{py} at aft peak

ND_{pp} at fore peak

Symmetry Condition in CL

Loading	Case
---------	------

There were modelled two
loading cases:

- full cargo load case (LC_F);

- ballast load case (LC_B).

These loading cases were modelled according to <u>GL 2011 -</u> Part 1, Ch. 1:

- Sec. 4. Design Loads

NDpp

- Sec. 5. Longitudinal Strength.

Numerical Results - Full Loading Case - wave in sagging conditions

Part 3 – Numerical Hydroelastic Linear and Non-linear Dynamic Response

Numerical Results - Full Loading Case

The dynamic shear force at hydroelastic linear and non-linear analysis, significant wave height $h_{1/3}=10.65m$ at x/L=0.75

Ratios between short term oscillations and vibrations response, for the significant deformation, bending moment and shear force ($h_{1/3} = 10.65m$)

w _{1/3} _vib /	M_vib _{1/3} /	T_vib _{1/3} /
W _{1/3} _0SC	M_osc _{1/3}	T_osc _{1/3}
Linear	Linear	Linear
5.68%	15.07%	13.86%
Non-linear	Non-linear	Non-linear
5.78%	33.16%	27.37%

ç	Slamming	Green Sea
Bottom	Aft, h _{1/3} > 5.75m	Aft, h _{1/3} > 11.50m
	Fore, h _{1/3} >12.0m	Fore,
Side	Aft and Fore	h _{1/3} > 10.65m
	Springing	Whipping
Linea	: very reduced	High intensity
Nor	-linear: small	

Part 3 – Numerical Hydroelastic Linear and Non-linear Dynamic Response

Numerical Results - Full Loading Case

The short term significant bending moments at still water + oscillation + vibration over the ship length, at dynamic linear and non-linear analysis for $h_{1/3} = 0.0$ to 12.0m

Part 3 – Numerical Hydroelastic Linear and Non-linear Dynamic Response

Numerical Results - Full Loading Case

The short term significant shear forces at still water + oscillations + vibration over the ship length, at dynamic linear and non-linear analysis for $h_{1/3} = 0.0$ to 12.0m

Detail	Maximum $\sigma_{VMD 3D}$	Maximum $\sigma_{xD 1D}$	k _{3D/1D}
	[N/mm ²]	[N/mm ²]	
Detail 1 - x/L=0.25	160.80	116.43	1.381
Detail 2 - x/L=0.50	251.24	200.65	1.252
Detail 3 - x/L=0.75	131.09	101.37	1.293

Part 4 – Fatigue Analysis and Preliminary Ship Life Prediction

16

Input data for fatigue analysis and initial ship service life prediction

GL2011 - I Part 1 Ch.1 Sec.20 R = 20 years – reference life time Joint configuration B2 from GL2011 **Ballast** loading **Full loading** 0.102 [Hz] 0.115 [Hz] OSC 8.688 [s] T osc 9.804 [s] 6.433E+07 [cycles] 9.074E+07 [cycles] n_osc f vib 0.546 [Hz] 0.663 [Hz] 1.832 [s] 1.508 [s] T vib 3.444E+08 [cycles] 5.227E+08 [cycles] n vib 355 [N/mm²] – the yield point R_{eH} R_{m} 490 [N/mm²] - the tensile stress limit 1.121 [N/mm²] f_R $\Delta \sigma_{R}$ 125.0 [N/mm²] (see Figure 199) f_m 1.0 - welded joint 1.4 - full penetration weld f_w F. 1.0 - primary structural element 3.0 - for welded joint m_0 0.15 - welded joint subjected to variable С stress cycles

Fatigue Cases Nr. 1 North Atlantic - 1D-girder model 2 North Atlantic - 3D/1D combined model 3 Word Wide Trade - 1D-girder model 4 Word Wide Trade - 3D/1D combined model

Part 4 – Fatigue Analysis and Preliminary Ship Life Prediction

Numerical Results

3D/1D combined model with North Atlantic histogram

Detail 2 - $x/L = 0.50$								
	Full	Load	Ballas	t Load	0.5 full load + 0.5 ballast load			
Analysis	D_{SN_osc}	D_{SN_vib}	D _{SN_osc}	D_{SN_vib}	D_{SN_osc}	D_{SN_vib}	D _{SN_osc+vib}	L_osc_vib
ADV	0.8739	-	0.992	-	0.9330	-	0.9330	21.4
HEL	0.8739	0.0060	0.992	0.0000	0.933	3.0E-03	0.936	21.4
DYN-LN	0.8868	0.0032	1.092	0.001	0.990	1.9E-03	0.992	20.2
DYN-NLN	1.1133	0.0683	1.157	0.037	1.135	5.3E-02	1.188	16.8

Fatigue criteria is not satisfied

3D/1D combined model with Word Wide Trade histogram

Detail $2 - X/L = 0.50$								
	Full Load	d	Ballast Load (0.5 full load + 0.5 ballast load			
Analysis	D_{SN_osc}	D _{SN_vib}	D_{SN_osc}	D _{SN_vib}	D_{SN_osc}	D _{SN_vib}	D _{SN_osc+vib}	L_osc_vib
ADV	0.2651	-	0.305	-	0.2849	-	0.2849	> 35
HEL	0.2651	0.0051	0.305	3.7E-05	0.285	2.5E-03	0.287	> 35
DYN-LN	0.3095	0.0018	0.319	3.5E-04	0.314	1.1E-03	0.315	> 35
DYN-NLN	0.4037	0.0183	0.344	9.0E-03	0.374	1.4E-02	0.387	> 35

Fatigue criteria are satisfied

<u>ADN</u> – linear oscillations response without head wave interference component <u>HEL</u> – linear hydroelastic response in irregular head waves without interference component <u>DYN – LN and NLN</u> – linear an non-linear response in irregular head waves with interference component (wave model Longuet-Higgins)

Final Remarks and Conclusions

 From the stress distribution in the 3D-FEM model (global-local strength analysis), for both loading cases, it can be observed that the hot spots stress values are located in the main deck, around the cargo hold frames.

 From the hydroelastic linear and non-linear dynamic response analysis (irregular head waves), results that the bending moments and shear forces are higher in the non-linear analysis then in linear analysis. For this it is recommended to use the non-linear analysis for more accurate results.

• For stress based on non-linear hydroelastic analysis and using North Atlantic wave histogram the maximum $D_{SN(3D)}$ results **1.188 > 1**, so than the ship service life is reduced at 16.8 years < 20 years. In the case of using Word Wide Trade wave histogram no restriction occurs.

• The numerical results are pointing out that for large ships having high wave induced global vibration response, it is necessary to carry out an nonlinear hydroelastic analysis, under irregular waves, in order to have a more realistic long term fatigue analysis.

• The study should continue with a finer mesh 3D-FEM model analysis in the areas where were identified the hot-spot stress.

Thank You!

Bianca Cristea

